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Abstract

We present a multi-objective portfolio optimization framework to mini-

mize systemic risk arising from overlapping portfolios while accounting for

individual risk. To address non-convexity in systemic risk, we introduce an

Evolutionary Search algorithm that enables efficient exploration of the solu-

tion space. Applying our framework to EBA data, we find that minimizing

systemic risk results in highly concentrated and diverse portfolios, adding

empirical evidence to a growing literature on the ambiguous effects of diver-

sification on systemic risk. In contrast, individual risk-optimal allocations

exhibit high portfolio diversification and homogeneity. By characterizing a

set of efficient frontiers, we identify a trade-off between individual and social

optimality. Even a small preference for minimizing systemic risk leads to opti-

mal portfolios on the frontier that differ significantly from the observed ones,

suggesting potential inefficiencies in current portfolio structures.
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1 Introduction

Interconnectedness have been recognised as a significant source of fragility for the

financial system over the past decade (Yellen, 2013). Since the first studies (Allen

and Gale, 2000; Freixas et al., 2000) there has been a broad consensus on its role

as a channel for transmitting shocks to the system, besides providing opportunities

for risk sharing. For this reason, especially in the aftermath of the Great Financial

Crisis, much research has been devoted to identifying the main structural determi-

nants of systemic risk and to studying the potential trade-offs between robustness

and fragility of different connectivity patterns (Gai and Kapadia, 2010; Elliott et al.,

2014; Acemoglu et al., 2015). Connections between financial institutions are nowa-

days naturally modeled in network settings, which can comprise different types of

links, ranging from direct financing contracts to information networks (Benoit et al.,

2017). For this reason, an increasing number of studies adopts multi-layer network

frameworks. Among the layers that can give rise to financial contagion between

institutions, direct financing contracts are the most widely studied. However, con-

tagion can also be driven by asset sales through price-mediated spillovers (Cifuentes

et al., 2005), which create indirect linkages between institutions that add to direct

financing relationships, and increase the potential for shock transmission. Empirical

evidence shows that indirect linkages are also relevant between different types of

institutions (Barucca et al., 2021), involve different types of financial instruments

(Falato et al., 2021), and are also significant at the international level between dif-

ferent financial systems (Giudici et al., 2020), both as individual drivers of systemic

losses in fire-sale scenarios (Ellul et al., 2011; Shleifer and Vishny, 2011) and in their

interaction with direct linkages (Caccioli et al., 2015; Poledna et al., 2015; Glasser-

man and Young, 2015). Therefore, providing general results on how asset allocation

contributes to determining the fragility of the system is essential to gain a complete

picture of potential sources of instability in the financial system and develop ap-

propriate risk monitoring and mitigation tools. For this reason, some contributions

have begun to study ways to model links between institutions resulting from portfolio

overlaps and develop appropriate measures of systemic risk (Greenwood et al., 2015;

Cont and Schaanning, 2019; Duarte and Eisenbach, 2021; Poledna et al., 2021; Cao

et al., 2021). Despite significant advances in measurement and monitoring, there

has been limited research on the relationship between alternative portfolio allocation

structures and systemic risk. In particular, it remains unclear whether the fragility

drivers suggested by the literature for direct interbank exposures also apply to in-

direct linkages. In this respect, growing research suggests a potential detrimental

effect of diversification for financial stability. While individual risk minimization

would drive portfolios towards more diversified allocations, some theoretical studies
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find that financial institutions, by diversifying their portfolios in order to reduce

their exposure to idiosyncratic shocks, end up holding very similar and highly cor-

related portfolios. By doing so, they expose themselves to common shocks, thus

increasing the probability of massive defaults (Acharya, 2009; Wagner, 2010; Ibragi-

mov et al., 2011). In particular, Wagner (2010) and Ibragimov et al. (2011) find that

above a certain level, diversification can become excessive, highlighting a trade-off

between individually and socially optimal diversification, as also stressed in Beale

et al. (2011). These works define systemic risk in terms of probability of joint failure

of many financial institutions due to exposure to common systematic shocks. In

portfolio overlap models, systemic risk is endogenously determined by the structure

of asset allocation, giving rise to indirect connections between financial institutions.

These connections, while in normal times are a natural by-product of risk sharing,

can become channels for the transmission of idiosyncratic shocks in interaction with

leverage (Greenwood et al., 2015). While the role of diversification as a source of

fragility in case of systematic shocks has so far received large attention1, its role

in creating shock transmission channels has been much less studied. Simulations

conducted by Caccioli et al. (2014) suggest a non-monotonic relationship between

diversification and probability of contagion, finding two phase-transitions in the re-

lationship. Very low and very high levels of diversification are found to be associated

with relatively low probabilities of contagion, while intermediate levels are associ-

ated with the highest contagion probability. However, they also find that when

contagion does occur, it involves an increasing number of institutions for higher lev-

els of diversification. These insights on the diversification-systemic risk relationship

raise the issue of how portfolio allocations should be structured in order to minimize

systemic risk. Capponi and Weber (2024) develop a model of systemic diversifica-

tion, as opposed to independent individual diversification, where banks accounting

for fire-sales externalities end up holding diverse portfolios to reduce the probability

and magnitude of fire sales events. Adopting a social planner perspective, Awiszus

et al. (2022), find that depending on financial institutions’ systemicness and assets’

shock distribution, socially optimal portfolio allocation can deviate substantially

from perfect diversification.

The potential ambiguity of diversification raises concerns about the safety im-

plications of actual portfolio allocations by financial institutions. Efforts to increase

diversification may unintentionally compromise financial stability while attempting

to strengthen the safety of individual institutions. At the same time, low levels of

diversification might nevertheless be inefficient from a systemic perspective, and a

path to safer allocation may exist that also avoids deterioration in individual risk

1See Jackson and Pernoud (2021) for a recent review of the literature.
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exposures. Recent works have started to apply constrained optimization problems to

financial networks to determine the asset rebalancing needed to make financial sys-

tems safer from a systemic perspective. Diem et al. (2020) and Krause et al. (2021)

optimize direct networks by reallocating interbank claims from observed data and

find that systemically risk-optimal structures are significantly sparser than observed.

Even with individual indifference constraints that account for potential trade-offs

with individual risk, they find room for improvement in the systemic risk dimen-

sion. Pichler et al. (2021) apply the same approach to a portfolio overlap network.

In particular, they find portfolio allocations that minimize systemic risk under size

and individual risk-return constraints, such that more resilient structures can be

achieved through optimal portfolio rebalancing. Efficient asset allocations are found

to be comparable to the status quo in terms of aggregate measures of portfolio

diversification and the resulting network topology. These results, which highlight

the potential for reducing systemic risk while still preserving individual preferences,

raise some questions about the options available to a regulator seeking efficient com-

binations of individual and social optimality. Portfolio rebalancing could be costly

and may require significant intervention to reach optimal configurations. A cru-

cial aspect to consider is how close we are to optimal structures and how much

weight should be given to individual and social optimality in the decision-making

process. In addition, systemic risk in portfolio overlap models has so far focused on

the consequences of asset sales in terms of downward pressure on the assets affected

by the sales. Although limited, there is evidence of spillovers between asset prices

(Greenwood, 2005), so that the extent of contagion could be broader.

In this paper, we address these issues by studying optimal asset allocations with

respect to systemic risk from a portfolio overlap perspective. To account for the

trade-off between individual and systemic optimality, we investigate efficient alloca-

tions by developing a multi-objective optimization framework based on a weighted

objective function that includes both individual and systemic risk components. We

measure individual and systemic risk using aggregate, system-level functions and

find optimal structures over a wide range of preferences for the two components con-

trolled by a single parameter, thereby characterizing an efficient individual-systemic

risk frontier. To assess potential differences in measured systemic risk, we pro-

vide results for both a standard portfolio overlap model and an extended model

that incorporates cross-sectional asset price spillovers. The optimization problem

we formulate poses significant analytical challenges. Since systemic risk arises from

the joint distribution of individual exposures, aggregated as a matrix of interacting

portfolio allocations, such a problem is analytically intractable except for very small

systems and under oversimplifying assumptions. Moreover, due to the non-convex

behavior of systemic risk with respect to the choice variables, standard solvers are of-
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ten unable to reach the global optimum. To overcome these problems, we introduce

a novel heuristic Evolutionary Search optimization algorithm that offers flexibility in

the definition of the objective function and applicability to a wide range of settings.

We apply our optimization framework and the proposed algorithm to the sovereign

portfolios of a sample of European banks and highlight the existence of a trade off

between the systemic and individual dimension. On one hand, optimal structures

from a pure systemic risk perspective are characterized by a higher degree of portfolio

concentration and a higher level of individual exposure to market risk. On the other

hand, optimizing for aggregate individual risk leads to highly diversified allocations

that also have a high degree of systemic risk. By varying the degree of preference

for individual risk in a multi-objective setting, we characterize a data-driven Pareto

frontier between the two risk components and identify the main features of the fi-

nancial system on the frontier. Even when systemic risk is given a small weight

in the objective function, optimal structures differ substantially from the observed

data, suggesting both systemic and individual risk inefficiencies in status quo port-

folio allocations. By introducing cross-sectional spillovers, we show that although

the macro-structural features of optimal allocations are not significantly altered,

systemic risk is amplified by the positive dependence structure between the consid-

ered assets and may be underestimated for the European case. Our results offer

several points of interest for both policy and research. First, we provide a valuable

method for assessing the state of the system in terms of its distance from an efficient

combination of individual and systemic risk. Based on a single parameter, we are

able to span the entire Pareto frontier of efficient portfolios, which could be a use-

ful reference for guiding optimal allocations based on a relative systemic-individual

risk appetite in a multi-criteria decision making (MCDM) framework. Second, we

provide new empirical evidence on the effect of diversification on systemic risk from

portfolio overlap for a relevant context. Maximally diversified portfolios are associ-

ated with high systemic risk, while minimal systemic risk portfolios show a degree

concentration consistent with the observed data. However, similar overall levels of

diversification can mask very different levels of systemic risk. Diversification toward

more liquid assets leads to much more resilient structures, while at the systemic risk

optimum, less liquid assets tend to be “isolated” in the fewest number of portfolios.

Overall, with this paper we contribute to a better understanding of the relation-

ship between systemic risk and the structure of the financial system. The tension

between the benefits of diversification in terms of individual risk and its potential

systemic costs can provide a rationale for some degree of portfolio concentration.

Furthermore, we offer a methodological contribution, presenting a robust algorithm

for solving non-convex constrained matrix optimizations, that exhibits remarkable

flexibility, efficiency, and ability to escape local optima.
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The remainder of the paper is organized as follows. In Section 2, we introduce

a general portfolio overlap model for a banking system and define the optimization

framework. In Section 3, we present the data, objective functions, and optimization

strategy. In Section 4, we provide analytical insights into the objective functions

and the optimal solutions. In Section 5 we present the results of the optimization

applied to European banks and comment on them in Section 6. Section 7 concludes.

2 General setting

2.1 A model of portfolio overlap networks

We consider a financial system comprisingN financial institutions (hereafter, banks),

each investing in a portfolio of K marked-to-market assets, having multivariate nor-

mal returns with mean 0 and covariance matrix Σ.2 Denoting by xik the amount

invested by bank i in asset k, the set of portfolios is described by the N ×K matrix

X = {xik}. All events in the system occur at time t, with variables implicitly defined

at that time. In this system, connections between banks are established through as-

set sales that cause price movements3, which are reflected in mark-to-market losses

in the portfolios of banks holding the same assets. Asset sales can be triggered by

deleveraging decisions following shocks to external assets (i.e., not included in the

trading book), as modeled in Greenwood et al. (2015) and Poledna et al. (2021).

Regardless of the reason for deleveraging and the amount of sales needed to restore

the required level of leverage, we model these linkages using a standard portfolio

overlap framework inspired by Greenwood et al. (2015) and Cont and Schaanning

(2017). Specifically, we assume that the percentage price impact for asset k result-

ing from quantity qk sold in the market can be expressed as a linear function of the

quantity sold:

∆pk(qk) = γkqk (1)

where γk is the linear price impact parameter for asset k, and qk is the quantity sold

in the market in the reference period.4 This setting allows modelling the connection

between banks i and j — i.e., their total portfolio overlap — as the maximum

2The assumption of normality is not essential at this stage of the model, but we introduce it since
it simplifies formulas for individual risk measures. As for the mean zero assumption, we introduce
it since it is consistent with the observed data on sovereign indices. Nevertheless, extensions for
different expected returns assumptions are possible.

3We implicitly assume that the fundamental value of the asset is unchanged, and the resulting
price variation depends on a temporary adjustment due to excess order flows (Chernenko and
Sunderam, 2020) resulting from exogenous portfolio adjustment decisions.

4At this stage, for simplicity, since all events take place in t, we consider a liquidation period
of one trading day. We also implicitly assume that the value of γk is such that ∆pk ∈ (0, 1) for
qk > 0, i.e., the market liquidity is sufficient to prevent the sales from driving the prices to 0.

6



1 2

A B

3 4 5

C

Banks

Assets

(a) Bipartite bank-asset network

1

2

3

4

5

(b) Bank-bank network

Figure 1: Portfolio overlap network. Panel (a) shows a bipartite network representation
of a system with 5 banks investing in 3 assets, where a link is drawn between a bank and
an asset if the bank holds the asset. Panel (b) shows the resulting bank-bank network,
where a link is drawn between two banks for each common asset in their portfolios.

potential fire-sale loss that bank i can cause to bank j by liquidating its entire

portfolio:

waff
ij =

K∑
k=1

xikγkxjk (2)

where the superscript refers to the fact that links are created by price effects only on

assets affected by sales. In network theory terms, the set of banks’ asset investments

is a weighted bipartite network, where an edge between bank i and asset k is estab-

lished if xik > 0, and the amount xik is the weight of the edge. Equation (2) defines

the one-mode projection (Newman, 2018; Jackson, 2008) of the bipartite network

expressed by the matrix X, which is represented by the weighted adjacency matrix

Waff = {waff
ij }. A stylized representation of the network is reported in Figure 1.

The formula in (2) only considers links between banks i and j due to potential

effects on the prices of the assets affected by the sales. However, the sale of an asset

k may not only have an effect on the asset k itself, but may also generate spillovers

to the prices of assets not affected by the sales due to adjustments in arbitrageurs’

portfolios (Greenwood, 2005). To account for this additional source of contagion,

an extended price impact formula must be introduced. We assume that a change in

the price of the security k is transmitted to a change in the price of the security l

through a coefficient βlk such that:

∆pl(∆pk) = βlk∆pk (3)

where ∆pl(∆pk) is the change in the price of asset l resulting from a change in the

price of asset k. The existence and magnitude of such spillovers depend on the

conditional distribution of asset returns and the dynamics observed in asset mar-

kets during a fire-sale event. In the next section, we propose a simple method for

estimating such spillovers that can take into account the sparsity of the dependence
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structure and the correlations arising from exposure to common factors. Leaving

aside the estimation of spillovers, and assuming a conditional dependence struc-

ture expressed by coefficients βlk, our banking system can thus be described by an

extended network of portfolio overlaps, defined as the set of links wtot
ij such that:

wtot
ij =

K∑
k=1

xikγkβlkxjl (4)

that can be decomposed into a part due to the price impact on the affected asset,

expressed by (2), and a part of the price impact deriving from spillovers, which adds

the information contained in the βlk coefficients:

wtot
ij = waff

ij + wunaff
ij =

K∑
k=1

xikγkxjk +
K∑
k=1

∑
l ̸=k

xikγkβlkxjl (5)

where waff
ij measures the link created by potential contagion through price effects

on assets affected by fire sales, while wunaff
ij measures contagion through spillover

to prices of assets not affected by sales. This second term can be an additional

source of risk when assets have a positive dependence structure, while in the case

of independent asset classes (5) would coincide with (2). Based on the matrix of

portfolios X, we can represent the extended portfolio overlap network with the

adjacency matrix:

Wtot = XΓB′X′ (6)

where Γ is a K ×K diagonal matrix of price impact coefficients γk, B = {βkl} is a

K ×K having βkl = 1 for diagonal elements k = l. Under no-spillover assumption,

the matrixB coincides with the identity matrix IK , and the network can be expressed

as:

Waff = XΓX′ (7)

2.2 Optimization problem

The network we have just introduced allows measuring systemic risk with several

alternative approaches. At this stage, we consider our general objective function to

be an aggregate measure of systemic risk, denoted as Ψ(X,Γ,B), defined on the

portfolio exposure matrix X, the price impact matrix Γ, and the spillover matrix B.

To preserve economic comparability between the optimal solutions and the status

quo, we follow the approach proposed by Diem et al. (2020) and Pichler et al. (2021).

Specifically, we restrict the search space to alternative configurations of the matrix

X that keep total assets for each bank and total outstanding amount for each asset
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unchanged. This is ensured by imposing linear equality constraints on the row

and column sums of the matrix. Additionally, we do not allow short positions by

imposing non-negativity constraints. In mathematical terms, we can introduce a set

of feasible systems F(X) defined by the following constraints:

F(X) =

{
X ∈ RN×K :

K∑
k=1

xik = di,

N∑
i=1

xik = sk, xik ≥ 0 ∀ i, k

}
(8)

where di are status-quo total assets for bank i (i.e., “demand” for assets from i), sk

is status-quo outstanding amount for asset k (i.e., “supply” of asset k). Therefore,

our optimization problem can be expressed as:

min
xik

Ψ(X,Γ,B)

s.t. F(X)
(9)

As presented in (9), the optimization focuses solely on systemic risk as the ob-

jective function. This implies ignoring all other aspects of the system and assuming

the role of a central planner whose sole goal is to minimize systemic risk. How-

ever, as noted above, there is a potential trade-off between systemic and individual

risk for each portfolio, primarily driven by diversification. Various strategies can

be employed to address this trade-off between individual and systemic risk within

an optimization framework. For instance, Pichler et al. (2021) introduce a set of

portfolio-level quadratic inequality constraints to ensure that the resulting individ-

ual risk does not exceed a certain threshold for each bank. Another approach is to

evaluate aggregate exposure to individual risk by deriving an individual risk coun-

terpart to Ψ(X,Γ,B). Assuming that all relevant information about individual

portfolio risk is incorporated in the covariance matrix of asset returns Σ, an ag-

gregate measure of individual risk within the system can be expressed as Υ(X,Σ).

Building on this, we construct a multi-objective constrained optimization problem

using linear scalarization, where the objective function is a α-weighted sum of the

two risk components:

min
xik

(1− α) Ψ(X,Γ,B) + α Υ(X,Σ)

s.t. F(X)
(10)

where α ∈ [0, 1], such that the objective function is a convex combination of systemic

risk Ψ(X,Γ,B) and aggregate individual risk Υ(X,Σ). The value of α indicates the

relative preference for minimizing systemic or individual risk in the system, where

α = 0 corresponds to minimizing systemic risk and α = 1 to minimizing individual
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risk. By varying α, we are able to find a Pareto frontier between individual and

systemic risk in the banking system, which can be used as a tool for multi-criteria

decision making, to evaluate existing structures in terms of their distance from the

preferred combinations of the two measures, and to study how optimal portfolio

structures change between the two extremes. The way the optimization problem

can be addressed differs depending on the choice of the objective function, which

we introduce in the next section.

3 Data and methodology

3.1 Description of the data

We apply our optimization framework to the European Banking System, using the

data on banks’ sovereign exposures published under the annual EBA Transparency

Exercise and generally reported on a semi-annual basis as end-of-semester exposures.

From the original EBA dataset, we select a sample of 49 banks from 10 EMU

countries and 27 country-specific sovereign assets. We supplement the data with

information on traded volumes and government bond indices, collected from various

sources. Our central assumption is that all assets in banks’ portfolios are marked to

market. This may be an overly simplistic assumption, as the EBA items for which

a counterpart country breakdown is available include both securities and loans. For

this reason, we refer to Duarte and Eisenbach (2021), who show that the evolution of

systemic risk from overlapping portfolios is not significantly affected by the inclusion

of loans in the fair value portfolio. Further details on the data sources and operations

on the sample are provided in B. Overall, our analysis covers about 70 percent of the

total sovereign exposures reported by EBA for the first semester of 2023 (2023-1).

The application to the European case is relevant because of the large absolute size

of sovereign assets held by European banks (EUR 3.4 tn in June 2023), and because

they represent a large share of total assets (on average, around 10%). Furthermore,

European banks’ significant investment in home country sovereign exposures poses

challenges due to the so-called bank-sovereign doom loop, as sovereign stress can

be amplified by banks’ holdings of government debt (Altavilla et al., 2017). Figure

2 shows total sovereign exposures for the sample considered (left scale), together

with their relative share of total assets (right scale) for 2023-1. We also report

the heatmap of EBA status quo portfolios for the same period in Figure 3, which

suggests that while most sovereign exposures are held in relatively small amounts in

banks’ portfolios, some assets play a dominant role, notably exposures to the largest

EMU countries (FR, ES, IT and DE) and US securities. The issue of sovereign

portfolio allocation and diversification is particularly relevant for European banks,
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Figure 2: Sovereign exposures descriptives (2023-1). Total sovereign portfolio for each
bank, ranked in descending order of size (left scale). The red crosses (right scale) represent
total sovereign portfolios as a share of total assets.

AT
01
AT

02
AT

03
AT

04
AT

05
BE0

6
BE0

7
BE0

8
DE0

9
DE1

0
DE1

1
DE1

2
DE1

3
DE1

4
DE1

5
DE1

6
DE1

7
DE1

8
DE1

9
ES

20
ES

21
ES

22
ES

23
ES

24
ES

25
FR

26
FR

27
FR

28
FR

29
FR

30
FR

31
GR32

GR33
GR34

GR35IE3
6
IE3

7
IT3

8
IT3

9
IT4

0
IT4

1
IT4

2
NL43NL44NL45NL46NL47PT

48
PT

49

Banks

AT
AU
BE
BG
CA
CN
CZ
DE
DK
ES
FI

FR
GR
HK
HR
HU
IE
IT
JP

NL
PL
PT
RO
SE
SK
UK
US

As
se

ts

0

50000

100000

150000

200000

250000

Figure 3: EBA sovereign portfolios (Million EUR, 2023-1). The columns of the heatmap
represent banks’ portfolios. Blank cells correspond to values exactly equal to 0.

11



FR
29
FR

26
FR

27IT4
2
ES

22
ES

25
DE1

3
FR

31IT4
0
NL47ES

20
BE0

7
AT

02
DE1

1
NL45ES

21
DE1

0
DE1

8
NL43DE1

4
FR

28
BE0

6
AT

03
PT

48
ES

24
PT

49
GR33

DE1
9
IT3

8
GR34

DE1
6
IT4

1
GR32

NL44ES
23IT3

9
GR35IE3

6
DE1

2
IE3

7
DE0

9
NL46AT

01
AT

04
BE0

8
DE1

7
AT

05
DE1

5
FR

30

0.0

0.2

0.4

0.6

0.8

1.0 Home country share in the portfolio
Home country share in the banking system

Figure 4: Home bias in sovereign exposures (2023-1). The red crosses represent the
observed portfolio share of home country assets for each bank, while the blue crosses
represent the corresponding shares in the system. The latter are the theoretical shares
under perfect diversification and are calculated as the ratio of the total outstanding amount
of home country assets to the total outstanding amount of sovereign assets held by all banks
in the system.

as they invest a relatively large share in home country exposures, indicating the

existence of a home bias in investment decisions. In Figure 4 we compare the

observed home country investment shares with perfect diversification shares, i.e.

the shares that banks would hold if they invested in assets in proportion to their

outstanding shares in the system. The data shows that, for most of the banks

in our sample, the observed home country shares are significantly higher than the

theoretical counterpart. On average, the former is 14 times the latter as of June

2023.

3.2 Network estimation

To estimate price impacts γk, we follow a common liquidity-weighted portfolio over-

laps model as developed by Cont and Schaanning (2019), and express the price

impact parameter as5:

γk =
1

Dk

(11)

where Dk is the market depth for security k, that we compute as:

Dk = c
AVk

σ̂k

√
τ (12)

5Other works use different specifications, such as the square root shape (Bouchaud, 2010) and
exponential shape (Cifuentes et al., 2005). For a review, see Cont and Schaanning (2017). However,
our optimization results are not significantly affected by different price impact assumptions, as
shown in Figure A.3. Therefore, we maintain the linear specification for ease of explanation.
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where we assume a liquidation period of τ days, AVk is the daily average trading

volume, σ̂k is the realized volatility of daily returns, and c is set to 0.3 following

Cont and Schaanning (2017) and Obizhaeva (2012). In summary, the market depth

is such that selling a nominal amount Dk/100 of asset k causes a 1% impact on its

price.

Various methods can be used to evaluate spillovers. In this setting, our aim is to

assess the impact of a price change in an asset affected by fire sales on other assets

that are not directly impacted by such sales. To address the estimation, in order

to account for the presence of systematic components potentially inducing correla-

tion between assets, we adopt a node-wise regression approach using an elastic-net

penalty (Zou and Hastie, 2005), as suggested in Meinshausen and Bühlmann (2006),

and formulated in Yuan (2010) and Bernardini et al. (2022). More specifically, given

the assumption of multivariate normality of asset returns, we model the distribution

of the return on asset k, conditional on the vector rt−k of the remaining K − 1 asset

returns, using the following linear relationship:

rtk|rt−k = αk + rt−kβk + εk k = 1, ..., K (13)

The adopted approach consists of estimating regression (13) for each asset, thus

obtaining K vectors βk having (K − 1) elements βkl. We then augment all vec-

tors βk by appending a 1 at position k and combine them row-wise to obtain B, a

K × K matrix with ones along the diagonal. We estimate regressions (13) on the

daily returns of government bond indices at semi-annual windows6, selecting the

amount of penalty by means of 5-fold cross-validation. Since we do not have further

information on the cross-section of government bond index returns, we adopt a bal-

anced approach and set the parameter controlling the trade-off between LASSO and

Ridge penalization to l1 = 0.5, corresponding to an equal weight assigned to each

penalty.7 While they are not the only alternative for estimating spillovers (Diebold

and Yilmaz, 2008; Billio et al., 2012; Anufriev and Panchenko, 2015; Barigozzi and

Brownlees, 2019), we choose node-level elastic-net regressions because they allow

robust estimation of directed linkages (expressed by the coefficients β) under highly

correlated regressors (Zou and Hastie, 2005) and a sparse underlying dependence

structure. In our application, we estimate return dependence in government bond

markets under normal market conditions. Price spillovers, as modeled by Greenwood

(2005), arise when temporary changes in asset prices due to non-fundamentally re-

lated sales are transmitted to temporary price changes in other assets unaffected by

6See Table B.1 for details on data sources.
7We have also checked the out-of-sample performance for different values of the l1 ratio between

0 and 1. However, the tests do not show a clearly better performance for any specific value, thus
leading us to adopt such a perfectly balanced approach.
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the sales, due to arbitrageurs’ hedging operations. Because they occur in exceptional

events, a more accurate estimate of such spillovers would require an event-study ap-

proach. However, event-study estimates would be difficult to extend for forecasting

purposes. To the best of our knowledge, no study provides an estimate of such

spillovers except Greenwood (2005), who tests his model on a redefinition event for

the Nikkei 225 index. For this reason, we follow the approach described above and

assume that the estimated matrix B holds for fire sales as well. Our goal is sim-

ply to compare the level of systemic risk with and without spillovers under a given

conditional distribution of asset returns and to find the corresponding optima.

3.3 Risk measures

Based on the network model introduced in Equation (7), in this section we present

the measures adopted for both systemic and individual risk and outline the opti-

mization strategy. Recent literature has introduced a number of different approaches

to the definition and quantification of systemic risk in a portfolio overlap setting,

encompassing both aggregate and individual bank or asset levels. Caccioli et al.

(2014) employ what we refer to, for simplicity, as a “stability approach” to systemic

risk. This approach focuses on assessing the probability and extent of contagion

within a financial system through analytical evaluations of stability properties in

indirect link networks. The method is based on the analysis of the principal eigen-

value of a matrix containing the probability of default in a branching process. They

show that this approach performs well in predicting the probability and extent of

contagion in a given system. Cont and Schaanning (2019) also adopt a stability ap-

proach to systemic risk, and introduce measures of bank-level systemicness based on

eigenvector centrality computed on the weighted adjacency matrix. An alternative

and widely used approach to measuring systemic risk is based on quantifying losses

from indirect contagion under different assumptions about fire sales, deleveraging

behavior, and initial shocks. Greenwood et al. (2015) introduce a measure of aggre-

gate vulnerability (AV) as the sum of potential losses that the system would suffer

as a result of a shock to asset returns relative to total capital. Similar measures are

also presented in Braverman and Minca (2018) and Duarte and Eisenbach (2021).

While aggregate vulnerability, as defined in Greenwood et al. (2015), accounts for

first-round contagion losses due to bank deleveraging, Poledna et al. (2021) adapt

Battiston et al. (2012)’s DebtRank to a network of indirect connections. This mea-

sure, through an iterative algorithm, quantifies the losses incurred by the system in

subsequent rounds of contagion under a linear deleveraging scenario and asset sales

proportional to portfolio weights. Similar approaches are also used in Cao et al.

(2021) and Cont and Schaanning (2017).
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In this paper, we define aggregate systemic risk as the total amount of portfolio

overlap in the system, which provides a measure of the maximum potential losses

that banks could suffer in the event of fire sales. This choice is motivated by Pichler

et al. (2021), who use a first-round approximation of DebtRank, where exposures

are scaled by equity, and find that optimized structures are also more resilient to

subsequent rounds of losses. Thus, for the baseline case without cross-sectional

spillovers, we define our systemic risk function as the sum of portfolio overlaps in

the system:

Ψaff =
∑
i

∑
j ̸=i

waff
ij =

∑
i

∑
j ̸=i

∑
k

xik
1

Dk

xjk (14)

while the extended version, including the spillovers to unaffected assets, is computed

as:

Ψtot =
∑
i

∑
j ̸=i

wtot
ij =

∑
i

∑
j ̸=i

∑
k

∑
l

xik
1

Dk

βlkxjl (15)

In both versions, we exclude fire-sales haircuts, i.e., losses banks would cause

to the residual assets of their own portfolio, by selling a part of it. Equation (15)

corresponds to the sum over all elements of the matrix:

W − diag(W)

The measure proposed in (14) is in line with standard aggregate vulnerability

measures. We can reformulate (15) as the sum of two components:

Ψtot =
∑
i

∑
j ̸=i

∑
k

xik
1

Dk

xjk︸ ︷︷ ︸
Ψaff

+
∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

xik
1

Dk

βlkxjl︸ ︷︷ ︸
Ψunaff

(16)

where the first term measures the total amount of portfolio overlap due to holdings

of the same asset. Contagion in this component is due to the price impact of sales of

the affected assets. The second term is a measure of the amount of portfolio overlaps

due to the potential price impact of spillovers to unaffected assets. While the first

component is always positive and, except for perfectly symmetric systems, has a

minimum non-eliminable part, the contribution of the second component to the

total portfolio overlaps will vary depending on the conditional distribution of asset

returns. The linear specification of the price impact function can cause prices to fall

below zero. For this reason, we cap the price impacts at 1 in the implementation of

the objective function. Except for the case where a single bank’s holding of asset k

is larger than market depth, the overlapping portfolio network will be symmetric,

as wij = wji.

As for the individual risk component Υ, to ensure the possibility of measur-
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ing individual risk in nominal terms, as is the case for (14) and (15), we adopt a

Value-at-Risk approach under asset returns normality assumptions. Therefore, bank

i’s individual risk can be measured as the period portfolio Value-at-Risk at the p

confidence level:

V aRp
i = −zp · σi · di = −zp ·

√√√√ K∑
k=1

K∑
l=1

ωikωilσkl · di (17)

where σi is bank i’s portfolio standard deviation and di is its total portfolio value,

introduced in (8), while ωik and ωil are, respectively, the weights assigned to assets

k and l in i’s portfolio, and σkl is the (k, l)-th element of the covariance matrix Σ.

Besides allowing direct comparability with systemic risk measures8, the choice of

Value-at-Risk as individual risk measure is motivated by existing theoretical models

entailing VaR-based risk regulation (Acharya, 2009; Ibragimov et al., 2011; Adrian

and Shin, 2013). Based on individual V aR measures, we define our aggregate mea-

sure of individual risk as the period aggregate Value-at-Risk in the system, computed

as the sum of individual V aRs:

Υ(X,Σ) =
N∑
i=1

V aRp
i (18)

3.4 Optimization strategy

Previous work has proposed several alternatives to perform the systemic risk mini-

mization. For direct network optimization, Diem et al. (2020) formulate the problem

as a standard mixed-integer linear program, while in a similar application Krause

et al. (2021) use a stochastic optimization algorithm. For portfolio overlap net-

works, Pichler et al. (2021) show that the optimization problem can be expressed as

a quadratic program. All of these works take a systemic risk measure as the objec-

tive function of the problem, with constraints imposed on marginal quantities (i.e.,

row and column sums of the network matrix) and individual risk-return indifference

constraints. The aim of our analysis is to investigate how portfolio allocation should

be structured to minimize systemic risk and to evaluate the system’s properties un-

der different preferences for systemic and individual risk. As a result, the number

of optimizations we need to perform is significantly larger than a one-time systemic

risk optimization. In addition, our α-weighted objective function introduced in (??)

cannot be easily accommodated in standard formulations, and the non-convex na-

8Direct comparison of (18) with (14) and (15) requires caution in any case. In fact, while the
former is an expected maximum loss the portfolio would experience, in the reference period, with a
given degree of confidence, the latter represents the maximum amount of losses if banks liquidate
all their assets at the same time.
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ture of the systemic risk function complicates the adoption of standard optimization

tools. For these reasons, we introduce an evolutionary search algorithm to solve the

problem (10). The algorithm performs a non-deterministic heuristic optimization

using an evolutionary search strategy that employs a mutation approach to explore

the solution space. More specifically, at each iteration, a population of feasible so-

lutions is generated by a constrained mutation process and evaluated according to

the given objective function. The algorithm randomly initializes solutions and it-

eratively mutates them, updating the current solution when a better one is found.

Threshold acceptance is used to adjust the acceptance criterion during evolution.

In addition, different initialization methods are used to escape local optima. This

method allows the use of different types and combinations of objective functions to

obtain optimal networks under different degrees of preference over the components

as in (10). This approach guarantees flexibility in the definition of the objective

functions and the assumptions underlying the network model. In addition, the ex-

ecution time is significantly reduced, allowing the comparison of different optimal

structures.9

In the following analyses, we proceed as follows. After providing analytical in-

sights into the shape of the objective function and optimization solutions for a small

toy system, we apply our approach to the data by first optimizing the constrained

objective function defined in (14) under the constraints set in (8). To compare opti-

mal solutions with and without cross-sectional spillovers, we provide the optimized

solution for the extended formula (15) under the same constraints to maintain com-

parability. Both solutions consider only potential losses due to contagion, as the

diagonal elements of the matrix W are set to zero, and ignore banks’ own exposures

to fire-sale haircuts. We compare the systemic risk-optimal allocations with the

individual risk-optimal allocations obtained by minimizing (18). Finally, we solve

problem (10) using both the standard and spillover-augmented systemic risk func-

tion by varying the coefficient α between 0 and 1. The solutions to the α-weighted

problem allow us to characterize a Pareto frontier between systemic and individual

aggregate risk, where solutions with α = 0 correspond to the systemic risk-optimal

structures, while solutions with α = 1 coincide with the individual risk-optimal

structures.

9For more details on the technical aspects of the implementation and the pseudocode of the
algorithm, see D.
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4 Optimal solutions for toy systems

Before presenting the results of the empirical application, we discuss the analyti-

cal aspects of the objective functions introduced earlier and their implications for

portfolio optimization within a simplified toy model. More detailed derivations are

given in C. We begin by considering a simplified financial system consisting of two

banks and two assets. Banks 1 and 2 have total assets d1 and d2, respectively, while

the assets in the system have total outstanding amounts s1 and s2. By including

constraints on the total assets of the banks, we can represent the system using the

portfolio matrix:

X =

[
x d1 − x

y d2 − y

]
Using this representation, we solve the optimization problem for the limiting

cases of pure systemic risk minimization (α = 0) and pure individual risk mini-

mization (α = 1), assuming the absence of cross-sectional spillovers. The objective

function Ψaff (x, y) is concave under the feasible set F , leading to a corner solu-

tion for the systemic risk minimization problem. Figure 5 (Panel (a)) provides a

graphical illustration of Ψaff for the case 2 × 2, with parameters set such that

d1 < s1 < s2 < d2 and γ1 > γ2. The solution to the minimization is at the point:

x∗
Ψ = x∗

11,Ψ = d1 and y∗Ψ = x∗
21,Ψ = s1 − d1

while the banks’ exposures to asset 2 can be derived from the constraints as x∗
12,Ψ = 0

and x∗
22,Ψ = d2. At the systemic risk optimum, the least liquid asset 1 is concentrated

as much as possible in the portfolio of bank 1, and only the remaining outstanding

amount is allocated to bank 2, which is able to invest fully in the total outstanding

amount of asset 2. Therefore, the only portfolio overlap generated at the optimum

depends on the remaining outstanding amount of asset 1. Panel (b) of Figure 5 shows

the plot for individual risk Υ(x, y) as a function of x and y, assuming σ2
1 > σ2

2 > σ12.

We can show that the solution to the first-order conditions for the independent Υ

minimization under the feasible set F is the maximum entropy (ME) allocation:

x∗
ME =

(
s1

s1 + s2

)
d1 and y∗ME =

(
s1

s1 + s2

)
d2

which corresponds to distributing portfolio weights of each asset in proportion to

its relative outstanding amount in the system. Under a wide range of problem

parameters, individual risk is a strictly convex function of x and y, and the ME

allocation is the unique solution to the minimization problem. In Panel (a) of

Figure 5, we also plot the value of Ψaff for the ME allocation (xME, yME), showing
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(a) Systemic risk (Ψ) (b) Individual risk (Υ)

Figure 5: Surface and feasible set. Surface plots for the objective functions Ψ(x, y) (a)
and Υ(x, y) (b) over a restricted range of values for the dependent variables. The feasible
set of values for x and y is represented by the red curve. The parameters are set such that
d1 < d2, s1 < s2, γ1 > γ2, and σ2

1 > σ2
2 > σ12. Minimum points are shown as blue dots,

corresponding to a corner solution for systemic risk and the maximum entropy allocation
for individual risk. The systemic risk associated with the maximum entropy allocation is
also shown as a green dot in Panel (a), which is shown to be very close to the maximum
for the objective function under the feasible set.

its proximity to the maximum systemic risk level under the feasible set.

Overall, the analysis of a small system provides useful insights into the shape of

the objective functions and the direction of the solutions to the separate individual

and systemic risk minimization problems. First, it shows that portfolios that min-

imize systemic risk are maximally concentrated. In the limiting case of a perfectly

symmetric system, where d1 = d2 and s1 = s2, optimal portfolios would be isolated

with no overlap, while the degree of liquidity of the assets would not be relevant to

the solution. If some overlap is necessary due to asymmetries in the system, then

the comparative evaluation of asset size and liquidity will determine which assets are

better isolated and which can be shared by different portfolios. Since the solution lies

in one of the corners of the problem, a comparison must be made between the values

of the objective function at each corner. Second, aggregate individual risk minimiza-

tion leads to fully diversified allocations. Portfolios in the individual risk optimum

are perfectly homogeneous, and all banks allocate their holdings according to the

same weights. In contrast, portfolios in the systemic risk optimum are characterized

by extreme diversity in asset allocation. Finally, even in a small system such as the

one under analysis, there is a clear trade-off between individual and systemic risk.

As we show in Figure 5, the optimal solution for minimizing individual risk is close to

the maximum point for systemic risk, and vice versa. Optimizing for one dimension

of risk tends to exacerbate the other, suggesting a significant inefficiency in finding

optimal solutions to each problem independently. Seeking only individual risk min-
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imization will produce highly inefficient portfolios from a systemic perspective, and

the same is true for systemic risk minimization alone. Therefore, this trade-off must

be taken into account when evaluating portfolio allocations, and intermediate solu-

tions could allow both dimensions to be addressed. Since the analytical derivation

of an optimal solution that considers both objective functions does not have the nice

properties of the functions just analyzed, we provide a more detailed treatment of

the multi-objective optimization problem applied to the European case in the next

section.

5 Empirical Results

5.1 Portfolio and network features at the optima

Figures 6 and 7 show a first set of optimization results for the sample of banks

considered in the analysis. We denote the matrix portfolios resulting from the op-

timization of (14), (15), and (18) as X∗
Ψ,aff , X

∗
Ψ,tot, and X∗

Υ, while the portfolios

resulting from the full multi-objective optimization (10) are denoted by X∗
α. The

adjacency matrices of the resulting networks are denoted by W∗
Ψ,aff , W

∗
Ψ,tot, W

∗
Υ,

and W∗
α. In particular, Figure 6 shows the optimal solutions X∗

Ψ,aff , X
∗
Ψ,tot, and X∗

Υ

based on 2023-1 data, providing a first comparison with the status quo portfolios

shown in Figure 3, while Figure 7 shows the corresponding portfolio overlap net-

works. These solutions coincide with the opposite extremes of problem (10), with α

set to 0 for Panels (a) and (b) and α = 1 for Panel (c) in both Figures. Systemic-risk

optima (Panels (a) and (b) of Figure 6) show a high degree of portfolio concentra-

tion. Panel (c) shows the optimal matrix X∗
Υ for the individual risk optimization,

which converges to the perfectly diversified solution introduced in section 4. Port-

folio concentration in the systemic risk optima results in sparser networks in both

cases, as shown in the first two panels of Figure 7, while the network of portfolio

overlaps is complete for the individual risk optimal portfolios, reported in Panel (c).

Network plots in Figure 7 show that the number of economically relevant connec-

tions is significantly higher for X∗
Υ, while most of connections arising in the optimal

systems X∗
Ψ,aff and X∗

Ψ,tot take very small values.

A first aspect emerging from Figure 6 is the significant difference in portfolio

diversification. Systemic-risk optimal portfolios appear to be highly concentrated

both for the standard model and for the one including spillovers, and network overall

topological features are preserved in both versions. In fact, the inclusion of spillovers

only affects the choice of which assets can be diversified more at the optimum (e.g.,

see differences for UK government bonds). Since the shape of the results does not

change significantly between the two versions of the problem in the European case,
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Figure 6: Optimized portfolios (Million EUR, 2023-1). (a) Optimal portfolio structures
obtained by minimizing Ψaff (α = 0). (b) Optimal portfolio structures obtained by
minimizing Ψtot (α = 0). (c) Optimal portfolio structures obtained by minimizing Υ
(α = 1). Empty cells correspond to values exactly equal to 0.
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Figure 7: Optimized networks (2023-1). Weighted undirected plot of portfolio overlap
networks resulting from optimal structures under (a) Ψaff , (b) Ψtot, and (c) Υ. All links
are estimated excluding cross-sectional spillovers between different assets and assuming
daily liquidation (τ = 1). To improve readability, edges with values less than EUR 100,000
are not shown in the graphs.
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we provide details and comments mainly for the standard model without spillovers.

For the sample considered, the returns on sovereign assets show a mostly positive

dependence structure, as shown in Figure A.1, where we report the estimated B

matrix for the last period available (2023-1). Therefore, price impacts generated

by asset sales are transmitted to losses in prices of assets not affected by sales,

thereby amplifying aggregate losses in the system. Under correlation patterns where

a larger number of zero or negative components are present (e.g., including different

asset classes), systemic risk amplification features would be less pronounced and

would be partially offset by negative spillover components, as already pointed out

in the description of (16). For this reason, possible extensions of this framework to

simulated systems or to data with more asset classes would provide further insights

into the behavior of different systems with respect to systemic risk. We believe these

aspects deserve more attention, and we leave further analysis to future research.

In Table 1 we report summary statistics for the 2023-1 optimization results,

comparing systemic and individual risk optimal structures (columns I to III) with

the observed status quo data (column IV) and the maximum entropy (ME) system

(column V). Part A of the Table reports the value of the objective functions nor-

malized by total T1 capital of the system. The optimal allocations for systemic risk

take the minimum values for the respective objective functions, while systemic risk

is highest (almost identical) for the individual risk optimum and the ME matrix.

Aggregate individual risk takes its smallest value for the respective optimum and

the ME matrix, indicating almost complete convergence of the optimization algo-

rithm to the maximum entropy portfolio allocation, and suggesting optimality of

perfect diversification even for systems larger than 2× 2. However, the values of Υ

for the other structures do not vary significantly. This fact suggests a large scope

for systemic risk reduction without excessive deterioration of individual exposure to

market risk for the case of European sovereign exposures. To provide a parallel to

the 2 × 2 case, we also ran maximization for both Υ and Ψaff and found that the

maximum value for Υ99% with τ = 20 is about 8.1% of total capital, slightly higher

than the corresponding value for the Ψtot optimum. The maximum value for Ψaff

is 13.1% of total capital, which is also very close to the value registered under ME

structures, confirming the suggestive evidence provided in the previous section.

Part B of Table 1 provides a comparison of portfolio statistics for the alerna-

tive structures considered. As a measure of portfolio diversification, we report the

average Herfindahl-Hirschmann (HH) index for bank portfolios, computed as:

HHi =
∑
k

(
xik

di

)2

(19)
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Table 1: Optimization results. Summary statistics for the optimization results (columns
I-III), against the status quo (column IV) and the maximum entropy (XME , column V)
portfolios, obtained on the 2023-1 data. The objective function values in Part A are
normalized by dividing by the sum of banks’ T1 capital, for a liquidation period τ = 20.
Network statistics are computed for τ = 1. The numbers in parentheses in part C are the
average number of negative links per node.

X∗
Ψ,aff X∗

Ψ,tot X∗
Υ Status quo XME

(I) (II) (III) (IV) (V)

A. Objective functions values

Ψaff 0.030 0.043 0.127 0.109 0.128
Ψtot 0.202 0.173 0.288 0.272 0.288
Υ99% 0.075 0.078 0.071 0.072 0.071

B. Portfolio statistics

Average HH banks 0.45 0.89 0.11 0.44 0.11
Average HH assets 0.77 0.82 0.06 0.22 0.06
Average N. assets 4.24 1.57 26.04 14.34 27
Assets rebalancing required (l1 dist., %) 86.3 87.6 64.4 - 64.1
Average portfolio diversity 0.63 1.01 0.03 0.79 0

C. Network statistics

Density 0.76 0.47 1 0.99 1
Average degree 36.4 22.6 (2.9) 48 47.7 (1.6) 48
Average DebtRank (τ = 1, s = 1) 0.029 0.042 0.088 0.072 0.089
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for each bank. The HH index takes values closer to 1 the more concentrated are

the portfolios. Average diversification at the bank level is comparable between the

optima and the status quo, and is highest (i.e., lowest HH index) for the individ-

ual risk optimum and the ME system. Therefore, from an average diversification

perspective, status quo portfolios have allocations closer to systemic risk optima

than individual risk ones. However, status quo portfolios contain a larger number

of assets. We take a deeper look at portfolio diversification in Figure 8, reporting

the distribution of banks’ HH indexes for the different optimal structures X∗
α as the

value of α varies between 0 and 1, where α = 0 corresponds to the systemic-risk

optimal structure while α = 1 to the individual risk optimal structure. The first

observation reports the HH-distribution for the status-quo EBA system. European

banks’ sovereign portfolios show a high degree of variability in diversification, rang-

ing from a HH index of about 0.12 to full concentration (HH = 1)10. Optimization

also reduces variability in portfolio diversification levels. For systemic risk optimal

structures (α = 0), while we observe comparable average HH indexes, the lower

tail of the HH distribution is significantly shrunk, suggesting that highly diversi-

fied positions are inefficient from a systemic risk perspective. As we move towards

individual risk optimal structures, diversification increases, until converging to a

maximum entropy allocation where all banks hold the same shares of assets in their

portfolios.

Overall, extreme diversification appears to be inefficient from a portfolio overlaps

perspective, while the average diversification observed in the banking system is pre-

served under the optimization approach. Optimal portfolio diversification must be

combined with targeted asset selection, as the connectivity structure is determined

by the combination of asset allocation and asset liquidity. As also suggested by the

analytical intuition, optimization tends to concentrate illiquid assets (i.e., those with

the highest price impact coefficients) in the smallest possible number of portfolios,

and to spread the “safest” assets, whose high degree of liquidity minimizes poten-

tial losses from exogenously driven fire sales. Certain structures of the system, in

particular for banks’ and assets’ size distributions closer to uniform, however, still

show maximum portfolio concentration at the optima.

The HH index may mask important structural differences in the composition of

sovereign portfolios when comparing systemic risk optima and the status quo. This

is mainly due to the influence of a significant home bias in banks’ observed portfolio

allocation. The large weight of home country exposures has the potential to skew

10Further analysis (not reported here) shows that banks of different size also have different
degrees of portfolio concentration. On average, banks in the highest quartile of the portfolio size
distribution show higher diversification (average HH around 0.3), while banks in the lower quartile
have more than 1.5 times average concentration (average HH around 0.51).
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Figure 8: Portfolio HH index distribution. The first boxplot shows the HH index distri-
bution for the status quo (sq) bank portfolios for 2023-1, while the following show optimal
structures for values of α ranging from 0 (X∗

Ψ,aff ) to 1 (X∗
Υ). Solutions are shown for the

objective function based on Ψaff .

the HH index towards higher values. Consequently, this bias offsets the higher

diversification observed in other assets in the status quo. To address this limitation,

we further investigate portfolio diversification by analysing the Concentration Ratio

(CR) for the different portfolio allocations. The CR is computed as the cumulative

sum of portfolio shares invested in the n largest assets within the portfolio. This

provides a more accurate perspective on the distribution of portfolio shares and

better captures the actual diversification profile. In our case, the concentration

ratio for the largest n assets in the bank i’s portfolio is obtained as:

CRi
n =

n∑
k=1

xik

di

for n = 1, ..., K. Figure 9 shows that on average, although the largest asset receives

a comparable share in the status quo, in systemic risk-optimal portfolios signifi-

cantly higher shares are assigned to the next largest assets. This suggests a more

concentrated portfolio on a few assets in the optimal structures compared to the

status quo. As shown in part B of Table 1, on average, banks’ systemic risk optimal

portfolios (columns I and II) have around 4 assets, while in the status quo banks

hold around 14 assets in the portfolios.

In Table 1, we also report the average asset-level HH index, which provides a

measure of how much government assets are spread across banks’ portfolios. On
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Figure 9: Average CR for bank portfolios. The crosses show the average CRn for the
different structures for all n. Assets are shown in decreasing order of size, so that for each
n, the average cumulative share of the largest n assets is shown.

average, assets are much more spread across portfolios in the status quo than in the

systemic risk optima, while concentration is lowest in the individual risk optimum.

The concentration at the asset level is consistent with the tendency highlighted in

the 2× 2 case: the choice of diversification depends on the size and liquidity of the

assets, as suggested by Figure 6, where the most diversified assets in the system

are the largest and most liquid. This is confirmed by Figure A.2, where assets

are ranked by their relative market absorption capacity. While there is a general

tendency toward concentration for all assets, the most liquid assets are still more

diversified in the optimal system.

Differences in diversification and asset selection are reflected in the structure of

the portfolio overlap networks. The first two rows of Section C of Table 1 show

network density and average node degree for all structures considered. We compute

node degree as the number of “active” edges (i.e., having a non-zero value) for each

bank, as follows:

degi =
∑
i ̸=j

1 {wij > 0} (20)

where 1 {·} is an indicator function that takes the value 1 when condition · is

met. Density is calculated as the ratio between the number of active edges and the

maximum number of edges for the undirected version of the network. The ME and Υ

optimal portfolios generate a complete network of portfolio overlaps, while the Ψaff

and Ψtot optimizations generate much sparser networks. Since some assets in the
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Figure 10: Node degree and network density for observed and optimal structures by
varying α (2023-1). The boxplots (right scale) show the degree distribution for the status
quo portfolio overlap network (sq) and for Ψaff -Υ optimal structures for values of α
ranging from 0 (W∗

Ψ,aff ) to 1 (W∗
Υ). The red dotted line (right scale) represents the

density for each network, computed as the ratio of the number of active connections
(
∑

i degi) to the total number of possible connections in the network (excluding self-
exposures, the total number of possible connections is N ×N −N).

market have negative correlations, the network derived using the full formula (7) has

some negative links, highlighting the potential systemic risk-reducing role of negative

asset correlations. The sparser network among those considered is produced by the

Ψtot optimization, due to the higher contagion potential of positive correlations,

which tends to move the optimal configurations toward higher concentration. In

Figure 10 we show the degree distribution for the optimized networks by different

levels of α and for the status quo. The degree distribution for the observed data is

significantly concentrated around full degree (where the maximum number of links

for the EBA network is 48), while systemic risk optima have lower node degrees.

As α increases, diversification causes network density to increase, eventually leading

to complete networks for α close to 1. Overall, while portfolio diversification shows

comparable values between the status quo and systemic risk efficient structures,

concentration ratios and network densities reveals substantial differences. In the

systemic risk-optimal structure, banks invest in fewer assets and network density

is reduced by about 20%. Moreover, the status quo level of systemic risk is much

higher than the optimal level. Thus, banks do not seem to take systemic risk into

account in their portfolio allocation.

We finally look at how optimal networks perform under different rounds of con-
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tagion. In part C of Table 1 we report DebtRank (Battiston et al., 2012) for each

network, using the adaptation to portfolio overlaps settings proposed in Poledna

et al. (2021). This measure is obtained as a result of an iterative process where

each bank at a time is subject to a shock s to its equity (in our case we model

bank failure, so we impose a shock s = 1) and sells assets proportionally, in a linear

deleveraging process. The contagion process runs until no more “distress” events

occur.11 The final value is the share of total assets in the system that is lost due to

contagion. In our application, we simulated the failure of each bank separately and

averaged across all banks. Although the average covers a wide range of values, the

interesting aspect of this application is the fact that under optimized systems, the

average losses in the case of contagion are about half of the losses incurred by the

status quo system, confirming the good performance of optimizing first-round losses

observed in Pichler et al. (2021) even under multiple rounds of contagion.

5.2 Distance measures

A crucial aspect of our problem is how close the observed portfolio allocations are

to the optima. In the last row of part B of Table 1, we report the average amount

of portfolio rebalancing needed to reach the corresponding structure from the status

quo, calculated as half the l1 distance between the portfolio vectors in the considered

structure and the portfolio vectors in the status quo. We multiply by 0.5 to avoid

double counting, since due to the constraints on banks’ total assets, the amount of

reduced positions must be exactly equal to the increase in other positions. Overall,

the status quo portfolios are on average closer to the individual optimum than to

the systemic risk optimum. The picture provided by the distance metrics also points

to the significant portfolio rebalancing required to achieve optimal configurations.

At the system level, Figure 11 shows the Frobenius distance between the status quo

and the optima for different values of α. Even assigning small weights to systemic

risk in the weighted objective function can cause significant deviations from the

status quo, suggesting potentially significant inefficiencies in the observed portfolio

allocations. Systemic risk optimization, while minimizing the amount of portfolio

overlap between banks, also increases portfolio diversity. In the last row of Part B,

we report the degree of portfolio diversity for each system, computed as the average

pairwise Euclidean distance between portfolios. The values of portfolio diversity are

highest for the status quo and the systemic risk optima, while tending to zero for

the individual risk optimum and for the maximum entropy portfolios.

11See Poledna et al. (2021) for a detailed description of the process.
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Figure 11: Frobenius distance from the status quo. The distance is computed as the
Frobenius norm of the matrix difference between the status quo and the optima under the
two objective functions Ψaff and Ψtot, scaled by the value of total assets. As we move
from minimizing only systemic risk (α = 0) to minimizing individual risk (α = 1), the
distance of the optimal structures from the status quo system decreases to almost half for
α = 1 compared to the distance observed for α = 0. This suggests a higher preference for
individual risk reduction than for portfolio overlap control.

5.3 Pareto Frontiers

Figure 12 provides a summary of the optimization results for a selection of periods

ranging from 2018-1 to 2023-1, for which we have already provided a more detailed

analysis.12 Results are represented as efficient individual-systemic risk frontiers, and

a comparison is provided with the status quo values. For each frontier, the top-left

point corresponds to Υ-optima (α = 1), while the bottom-right point corresponds to

α = 0 solutions. Two observations can be drawn by comparing the solutions to Ψtot-

and Ψaff -minimization. On one hand, ignoring spillovers to unaffected assets does

not significantly change the shape of the solutions. On the other hand, it would

lead to a systematic underestimation of systemic risk in the presence of positive

correlations. This difference is more pronounced in periods of high market volatility

when positive correlations are stronger, as is the case for 2022-2. Comparing optimal

values with status quo ones, we confirm that significant reductions in systemic risk

are possible with limited deterioration in individual aggregate risk. This is the case,

for example, for values of α between 0 and 0.1. The status quo system shows a

large room for improvement for all periods considered. In Figure 12, a “vertical”

move towards the frontiers in the plot would dramatically reduce systemic risk,

potentially without any deterioration in aggregate individual riskiness. A simple

12We considered these periods as case studies showing different market conditions. 2018-2 is
the one with the lowest observed volatility in the market, while in 2020-1 and 2022-2 the highest
volatilities have been recorded due to the COVID outbreak and global inflationary pressures,
respectively. 2023-1 was chosen as the last available period.
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Figure 12: Evolution of Ψ-Υ efficient frontiers. The frontiers represent the combinations
of Ψaff -Υ and Ψtot-Υ corresponding to optimal solutions under α ranging from 0 (pure
Υ optima, upper-left point of the curves) to 1 (pure Ψ optima, lower-right point of the
curves) for each selected period. The values of Ψaff and Ψtot are also displayed for the
status quo portfolios for comparison.

numerical example can show the possibilities of improvement. Among the points in

the Ψaff − Υ frontier, the one having the closer value of Υ to the observed data

corresponds to X∗
0.5, with Υ99% = 7.2% of total capital. Moving from the status

quo to this intermediate optimum would entail rebalancing around 79 percent of

the portfolio with no deterioration in individual risk, and a level of systemic risk

equal to 3.4% of total capital, with a systemic risk reduction of around 69 percent

compared to the status quo. The corresponding HH index, at the intermediate

optimum, would be equal to 30.3%, thus producing more diversified portfolios with

an average of 7.2 assets per bank.

6 Discussion of results

Taken together, the analyses presented so far reveal a number of important points.

First, we show a clear trade-off between minimizing systemic risk, which would

lead to highly concentrated portfolio allocations, and minimizing individual risk,

which would result in maximally diversified portfolios. We address this trade-off

by introducing a multi-objective evolutionary search framework, which allows us

to characterize a set of efficient systemic-individual risk frontiers. Second, from

an asset allocation perspective, our results show that diversification plays a cru-

cial role in determining the level of systemic and individual risk. However, similar
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aggregate levels of diversification may mask relevant differences in systemic risk,

the actual level of which is jointly determined by asset size and liquidity. Never-

theless, in general, high levels of portfolio diversification are never observed in the

optima, regardless of whether cross-sectional spillovers are ignored or included in the

quantification of systemic risk. Ignoring spillovers may lead to a potential underes-

timation of systemic risk, even though it does not change the overall results. When

there is a positive dependence among the asset classes in the portfolio, contagion

might be amplified. Third, from a system assessment perspective, we show that the

observed portfolio allocations are far from optimal and massive portfolio rebalancing

would be required to reach the efficient frontier. However, the distance to minimum

systemic risk is significantly larger than the distance to minimum individual risk.

The large variation in systemic risk associated with the different optimal structures,

compared to the smaller range of achievable individual risk levels, highlights the

potential for a significant reduction in systemic risk without a deterioration in indi-

vidual riskiness, for which we provide a numerical example. Finally, the problem we

address poses significant analytical challenges. Although we can provide analytical

intuition for small simplified systems, the non-convexity of systemic risk and the

multi-objective framework require an adjusted numerical approach. The algorithm

we present effectively addresses the issues raised by the structure of the problem

due to its flexibility in formulation, limited computational time, and superior con-

vergence properties compared to alternative solvers.

This paper is related to several previous works. Most directly, from a method-

ological perspective, it is related to recent contributions introducing network opti-

mization approaches. In particular, our framework is applied to the same European

sovereign exposure setting as Pichler et al. (2021), and we also find large scope for

systemic risk reduction without individual risk deterioration. Compared to their

approach, in addition to providing analytical intuition on the trade-off between the

individual and systemic dimensions, we extensively analyze portfolio allocations for

a wider range of combinations of systemic and individual risk. By employing a

flexible heuristic optimization algorithm, our framework can be applied to a wider

range of price impacts and objective functions, including multi-objective settings

with non-standard formulations. We also extend standard portfolio overlap models

to include the possibility of cross-sectional spillovers and find a potential underesti-

mation of systemic risk for standard models. Regarding the role of diversification as

a determinant of systemic risk, our results are also related to earlier work by Wagner

(2010) and Ibragimov et al. (2011). However, while in these papers systemic risk is

generated by exposures to common factors, in our setting systemic risk is the result

of portfolio overlaps generated by diversification. In this respect, our general setup

is consistent with Caccioli et al. (2014), who also suggest a potential negative effect
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of diversification on financial stability, from a positive perspective. By focusing on

optimal portfolio allocations from a central planner’s perspective and applying our

framework to real data, we provide an empirical application related to recent theo-

retical results on optimal systemic diversification. Capponi and Weber (2024) find

that maximum diversification at the individual level is inefficient when institutions

incorporate the possibility of fire-sale losses in their portfolio optimization problem.

On the one hand, our results also point to the systemic risk inefficiency of extreme

diversification, which is never observed at the optimum. On the other hand, compar-

ing the optima with the observed data, the status quo portfolios are far from being

optimal in terms of systemic risk, even though average diversification is close to the

optimal level. Banks invest in sovereign debt for a variety of reasons.13 Nevertheless,

their overall allocation appears to be driven more by individual Value-at-Risk than

by systemic risk considerations. Moreover, the analysis of different time periods

seems to suggest that banks do not adjust their portfolios towards VaR optimality

at the same pace as market conditions, since the distance from the optimum tends

to change as market conditions change.

7 Conclusion

The idea that diversification may have social costs in addition to individual benefits

is not new to economic research. Recently, there has been an increasing interest in

understanding how portfolio allocations behave with respect to systemic risk and

which allocations are best for preserving financial stability. In this paper, we take

this understanding a step further by investigating optimal allocations that take into

account the two potentially conflicting dimensions of individual and systemic risk.

The application to real-world data provides an empirical complement to recent the-

oretical studies and also offers some policy insights. First, it provides a rationale for

policies aimed at improving market liquidity, which could help to contain the magni-

tude of losses resulting from market stress. Second, the highlighted trade-off between

systemic and individual risk suggests that focusing on one dimension at a time may

have unintended harmful effects on the other. Thus, rather than promoting unfo-

cused diversification, incentives in asset selection — such as systemic risk taxes as in

Acharya et al. (2013) or Poledna and Thurner (2016) — might work better to steer

the system towards more stable configurations. Because of the substantial portfolio

rebalancing required to achieve optimal configurations, optimization cannot be a

policy solution for mitigating systemic risk. Still, it can provide useful information

for evaluating observed allocations. We do so for the case of European sovereign

13See Dell’Ariccia et al. (2018) for an overview and further references.
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exposures, which, though relevant, must be taken as a case study. Nevertheless,

the flexibility of our framework lends itself to extensions that include more general

cases with multiple asset classes, both on real and simulated data. Finally, further

research is needed on the inclusion of cross-sectional spillovers, both on the mecha-

nisms underlying the transmission of price impact and on the estimation of spillover

matrices. The latter would benefit from more granular data at the security level,

which could not be used for this application due to limitations in the granularity of

portfolio holdings data.
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A Additional Figures
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Figure A.1: Estimated B (2023-1). The figure shows the βlk coefficients obtained after
running K = 27 regressions of each k asset returns on the remaining K − 1 asset returns
for the period 2023-1. The vectors βk are shown as rows of the matrix, and the diagonal
elements are set equal to 1. The estimated matrix is non-symmetric (as βlk ̸= βkl), sparse
(about 60% of the elements are equal to 0), and has only one element with a value greater
than 1.
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Figure A.2: Asset-level HH index by relative liquidity (sk/Dk) in Ψaff -optimum and
status quo. We compare the asset-level Herfindahl-Hirschman index (which measures the
degree to which assets are concentrated in banks’ portfolios) for government assets. Assets
are ranked by the ratio between the total outstanding volume available in the system sk
and the estimated market depth Dk, which measures the potential price impact of the
asset in the system in the extreme case of a complete fire sale. The optimal structure
shows a low degree of concentration, indicating higher diversification for larger and more
liquid assets. In contrast, less liquid assets tend to be more concentrated, i.e. held by a
smaller number of banks. This difference is particularly evident for larger assets such as
Spanish, Italian, French and German government bonds. The optimal concentration for
the first two assets is significantly higher than the status quo. German and French assets,
on the other hand, are much more widely distributed across banks’ portfolios. For larger
assets, however, the possibilities for concentration are limited. This is because most banks
cannot invest their portfolio in the entire outstanding amount of these assets. Portfolio
concentration is thus determined by the interaction of size and liquidity.
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(a) Square root price impact
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(b) Exponential price impact
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Figure A.3: Optimal solutions for alternative price impacts. Panel (a) shows the Ψaff

optimal solution under the square root price impact (X∗
sqrt), while Panel (b) shows the

Ψaff optimal solution under the exponential price impact (X∗
exp). Both systems have high

degrees of concentration, higher than in the case of the linear specification (we observe an
average HH index of 93.7 percent and 90.1 percent for the square root and exponential
specifications, respectively).
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Table B.1: Data sources.

ID Country Bond prices Traded volumes Public debt
AT Austria S&P All Maturities Estimated OECD
AU Australia S&P All Maturities National OECD
BE Belgium S&P All Maturities National OECD
BG Bulgaria Refinitiv 10Y AFME World Bank
CA Canada S&P All Maturities National OECD
CN China S&P All Maturities asianbondsonline.org World Bank
CZ Czech Republic S&P All Maturities Estimated OECD
DE Germany S&P All Maturities National OECD
DK Denmark S&P All Maturities AFME OECD
ES Spain S&P All Maturities National OECD
FI Finland S&P All Maturities National OECD
FR France S&P All Maturities National OECD
GR Greece S&P All Maturities Estimated OECD
HR Croatia Refinitiv 10Y Estimated World Bank
HK Hong Kong S&P All Maturities National World Bank
HU Hungary Refinitiv 10Y AFME OECD
IE Ireland S&P All Maturities AFME OECD
IT Italy S&P All Maturities National OECD
JP Japan S&P All Maturities asianbondsonline.org OECD
NL Netherlands S&P All Maturities National OECD
PL Poland S&P All Maturities National OECD
PT Portugal S&P All Maturities National OECD
TO Romania Refinitiv 10Y National National
SE Sweden S&P All Maturities National OECD
SK Slovakia Refinitiv 10Y Estimated OECD
UK United Kingdom S&P All Maturities National OECD
US United States S&P All Maturities National OECD

B Sample data selection

We selected the sample as the largest list of banks-assets available for the period

2018-2023. The final sample includes 49 banks from 10 EMU countries and 27

country-specific sovereign assets. From the original list, we exclude all assets which

are not referred to a specific country (i.e., exposures to generally identified regions),

and sovereign assets for which no reliable data is available for the market. The data

are collected at a semiannual periodicity, our final dataset comprising 11 semesters

from 2018-Q2 to 2023-1. Information on counterparty country breakdown is avail-

able only for the total gross carrying amount of non-derivative financial assets, which

is a total item including all instruments and maturities. For this reason, trading vol-

umes data are collected for all-maturities instruments, and market price data refer

to all-maturities instruments. A detailed list of sources is provided in Table B.1. For
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some assets, trading volumes data are not publicly available, or just limited market

segments are reported, potentially causing an underestimation of market liquidity

for some instruments. In these cases, we used a simple regression approach to pre-

dict trading volumes using outstanding public debt, collected from various sources.

Regressions for each year produce very high adjusted-R2 coefficients (around 90%

for all periods), thereby signalling the good predictive accuracy of outstanding pub-

lic debt. The complete list of banks and the associated IDs used in the main part

of the paper is provided in Table B.2.

Table B.2: List of selected banks.

Bank ID Name Bank ID Name

AT01 BAWAG Group AG FR26 BNP Paribas
AT02 Erste Group Bank AG FR27 Groupe Crédit Agricole
AT03 Raiffeisen Bank International AG FR28 Confédération Nationale du Crédit Mutuel

AT04 Raiffeisenbankengruppe OÖ Verbund eGen FR29 Groupe BPCE
AT05 Volksbanken Verbund FR30 RCI Banque
BE06 Belfius Bank FR31 Société générale S.A.
BE07 KBC Groep GR32 Alpha Services and Holdings S.A.
BE08 Investeringsmaatschappij Argenta GR33 National Bank of Greece, S.A.
DE09 Aareal Bank AG GR34 Piraeus Financial Holdings
DE10 Bayerische Landesbank GR35 Eurobank Ergasias
DE11 Commerzbank AG IE36 AIB Group plc
DE12 DekaBank Deutsche Girozentrale IE37 Bank of Ireland Group plc
DE13 Deutsche Bank AG IT38 Banca Popolare di Sondrio S.p.A.
DE14 DZ Bank AG IT39 Credito Emiliano Holding S.p.A.
DE15 Hamburg Commercial Bank AG IT40 Intesa Sanpaolo S.p.A.
DE16 Deutsche Pfandbriefbank AG IT41 Mediobanca - Banca di Credito Finanziario S.p.A.
DE17 Erwerbsgesellschaft der S-Finanzgruppe mbH IT42 Unicredit S.p.A.
DE18 Landesbank Hessen-Thüringen NL43 ABN AMRO Bank N.V.
DE19 Norddeutsche Landesbank NL44 Coöperatieve Rabobank U.A.
ES20 Banco Bilbao Vizcaya Argentaria, S.A. NL45 BNG Bank N.V.
ES21 Banco de Sabadell, S.A. NL46 de Volksbank N.V.
ES22 Banco Santander, S.A. NL47 ING Groep N.V.
ES23 Bankinter, S.A. PT48 Banco Comercial Português, SA
ES24 Abanca Corporacion Bancaria, S.A. PT49 Caixa Geral de Depósitos, SA
ES25 CaixaBank, S.A.
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C Optimal solutions for a 2× 2 system

We consider a financial system comprising 2 banks investing in 2 assets. Banks 1 and

2 have, respectively, total assets d1 and d2, while assets 1 and 2 have outstanding

amounts s1 and s2. This system can be represented by the matrix:

X =

[
x11 x12

x21 x22

]

Incorporating the constraints on banks’ assets, we simplify the notation and

formulate the system in terms of 2 variables:

x11 = x, x12 = d1 − x, x21 = y, x22 = d2 − y

Systemic Risk Minimization. Given price impact parameters γ1 and γ2 for assets

1 and 2, the objective function for systemic risk minimization in the no-spillovers

case is:

Ψaff (x, y) = γ1xy + γ2(d1 − x)(d2 − y)

Thus, the optimization problem can be expressed as:

min
x,y

Ψaff (x, y)

s.t. x+ y = s1

x, y ≥ 0

(C.1)

It is straightforward to prove that Ψaff (x, y) is strictly concave for all x and

y. Due to concavity of the objective function, the solution to the minimization

problem will be at one of the corners of the feasible set. In a perfectly symmetric

system (d1 = d2 and s1 = s2), the minimum systemic risk solution will be either

at x = 0, y = s1 or vice versa. Introducing asymmetry in the asset outstanding

value distribution or in the banks’ size distribution makes one of the maximum-

concentration corners preferable, necessitating an evaluation of the objective func-

tion at each corner. While the minimum is located in one of the corners of the

feasible set, the solutions to the first-order Kuhn-Tucker conditions identify a global

maximum, which will be located at the point:

xmax =
1

2
s1 +

(
γ2

γ1 + γ2

)
(d1 − d2)

and

ymax =
1

2
s1 +

(
γ2

γ1 + γ2

)
(d2 − d1)
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For perfectly symmetric systems where d1 = d2, the maximum systemic risk

is reached at the perfect diversification portfolio, where each banks hold the same

shares of the two assets. For asymmetric systems, e.g., d1 > d2, the largest portfolio

receives a larger share of the asset, proportional to its relative liquidity. Thus,

maximum systemic risk portfolios are maximally diversified in homogeneous systems,

while the optimization will tend to spread the less liquid asset across a larger number

of portfolios, while concentrating more liquid assets, ceteris paribus. As we observed

in Section 4, asset selection at the optima jointly depends on assets’ price impact

parameters and size, since the choice of which assets can be shared more in the

system depends on the magnitude of the resulting portfolio overlaps.

Individual Risk Minimization. For the same 2 × 2 system, the individual risk

function, given the covariance matrix Σ, is expressed as:

Υ(x, y) =
√
Ax2 − 2d1Bx+ d21σ

2
2 +

√
Ay2 − 2d2By + d22σ

2
2

=
√
v1(x) +

√
v2(y)

(C.2)

where A = σ2
1 + σ2

2 − 2σ12 and B = σ2
2 − σ12, and v1(x) and v2(y) are, respec-

tively, banks’ 1 and 2 portfolio variances computed using asset holdings expressed

in nominal terms x and y. From the minimization problem:

min
x,y

Υ(x, y)

s.t. x+ y = s1

d1 + d2 = s1 + s2

x, y ≥ 0

(C.3)

we obtain the following first-order condition for interior solutions:

∂Υ(x∗, y∗)

∂x
=

∂Υ(x∗, y∗)

∂y

which, using (C.2), can be also expressed as:

dv1(x
∗)/dx

dv2(y∗)/dy
=

√
v1(x∗)

v2(y∗)
(C.4)

Since obtaining optimal values for x∗ and y∗ is analytically expensive, we adopt

the following strategy. The maximum entropy (ME) values of x and y for a bipartite

banks-asset system like ours are:

xME =

(
s1

s1 + s2

)
d1 and yME =

(
s1

s1 + s2

)
d2
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If xME and yME respect the first-order conditions, then the ME structure is a

solution to the minimization problem. We must verify that the following condition

is satisfied:

dv1(x
ME)/dx

dv2(yME)/dy
=

√
v1(xME)

v2(yME)

Replacing the expressions for xME and yME, we find that both the LHS and RHS

of (C.4) simplify to d1/d2. While the RHS simplifies to d1/d2 as well. Therefore,

xME and yME are solutions for problem (C.3). One can also show that, for A > B
d1σ2

2
,

Υ(x, y) is strictly convex ∀x, y ∈ R, and the ME structure is a unique solution to

the minimization problem, which is the case for a wide range of parameter values.
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D Description of the optimization algorithm

When deterministic numerical optimization techniques cannot efficiently solve an

optimization problem, non-deterministic heuristic methods can be useful alterna-

tives (Gilli et al., 2019). This is true for the problem in (10), which consists of

finding the matrix X∗ of bond holdings that minimizes individual and systemic risk

as measured by some objective function, while ensuring that supply and demand

of assets (marginal sums) are satisfied. For the problem at hand, we therefore pro-

pose a stochastic iterative method that can deal both with non-convex aspects in

the objective functions as well as the constraints regarding networks. The basic

functioning of the algorithm is described in the main text of the paper, while in

this section we present the pseudocode both for the Evolutionary Search algorithm

and for the mutation algorithm, respectively in Algorithms 1 and 2 below. The

linear formulation we adopted for the price impact function also allows to express

the problem as a quadratic program, which can be solved using standard quadratic

programming tools. We did so in parallel experiments, to test the ability of the

optimization algorithm to reach optimal solutions in simulated, smaller systems.

In particular — besides using solvers readily available in R, Matlab, and Python

— we implemented the quadratic-form systemic risk optimization in CPLEX and

GUROBI, that provided consistent results, although with significantly longer exe-

cution times and non-converging procedures as the system becomes larger.

As for the technical implementation strategy, to avoid unwanted biases and pre-

mature convergence to local optima, non-deterministic optimization methods bene-

fit from restarts with randomized initial solutions. To generate diverse yet feasible

initial solutions, we employ two methods: one uses the status-quo network and

performs the described mutation operation with a parameter pm close to 1. Alter-

natively, an empty network is generated, and then, iteratively, a random element

xik is picked and increased by a random amount 0 < δ ≤ min(d′i, s
′
k), where d′i and

s′k are the open demand of bank i and open supply of asset k, respectively, until

all margins are allocated. In preliminary experiments, the algorithm was tested on

artificial data sets for which the global optimum was known and was found to con-

verge satisfactorily under suitable hyper-parameters. The hyper-parameters were

then chosen based on experiments with the empirical data in this study. All re-

ported results are based on at least 500 restarts per case, with typically one to

five million function evaluations per restart. Therefore, reported results should be

the global optima or at least very close. All implementations were done in Python

3.10, using the packages numpy and multiprocessing for numerical routines and

parallelization, respectively.
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Algorithm 1: EvoSearch(X, f)

Data: X: initial feasible network, f(): objective function

Result: X∗ = argmin(f), optimized feasible network that minimizes f

set population size PS, function evaluations FE, iterations T = FE/PS

set parameters pm, τ , ∆τ = (τ − 1)/T

initialize Xc = mutate(X, 0.9), X∗ := Xc

for T iterations do
generate mutants m = 1..PS with Xm = mutate(Xm, pm)

identify best mutant: Xe = argminm(f(Xm))

if f(Xe) < f(Xc) · τ then
replace current solution: Xc := Xe

if f(Xe) < f(X∗) then
new acting optimum: X∗ := Xe

return X∗

Algorithm 2: mutate(X, pm)

Data: X: network, pm: controls amount of mutation

Result: Y: mutated (= randomly modified) version of X

set probability to swap maximum amount pf

initialize new mutant, Y := X

repeat
pick two banks i ̸= j and assets k ̸= l such that yik > 0, yjl > 0

choose fraction to swap: ϕ = 1 with probability pf , 0 < ϕ < 1 otherwise

choose amount to swap: ∆y = ϕ ·min(yik, yjl)

update bank i’s positions: yik := yik −∆y, yil := yil +∆y

update bank j’s positions: yjk := yjk +∆y, yjl := yjl −∆y

until rand > pm (exit loop with probability pm);

return Y
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